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A Perspective

- Parallel computing is ubiquitous, but It is not new at all

- Astonishingly, the Analytical Engine by Charles Babbage in
~1837 was a parallel computer

- In 1958 parallel computing was introduced by S. Gill
introducing branching and waiting, while at IBM J. Cocke
and D. Slotnick discussed parallelism in numerical

calculations

- The D825 by Burroughs Corporation, introduced n 1962,
was the first modern parallel computer with four-processors
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History of GPUs

- In the 1970s computers were bulky and graphics was
completely neglected

+ One sector, however, was interested in graphics: games

'he iIndustry was driven by arcade games, e.q., Namco,
aito, and many others

- The 1980s brought a great innovation with the Amiga PC

- Things changed greatly in the 1990s
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The World is 3D

- The 1990s saw a plethora of graphics cards with different
performances (S3, ATl, Matrox, Nvidia, ...)

-+ They were fixed functions, hence you had to write games
specifically for each of them

- Then, progressively, fixed functions were replaced by
programmable functions

- Now we know them by the term “GPUSs” (thanks to
Nvidia’s marketing team)
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How Speed Changed

- Qver the last decades, CPUs relied on clock speed to
INncrease performances

- There is a recent flat rate of growth among all CPU
vendors

- As it's now known In industry: the free lunch is over

- An increasing GPU market propelled investments in
research in many areas

+ The trend is obviously rising for GPUSs, flat for CPUs
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CPU Clock Rate
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TeraHertz”?



Cost of Performances
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Who uses GPUs?

TL;DR:
everyone, even if you don’t know
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Speedup

- How fast we can go Is highly dependent on how we
implement an algorithm

- Physical architectures for high performances matter a lot
and without that knowledge you won’t be fast

- Let’s see now how a GPU works

- After, we will see how we can use GPU to achieve way
more of just graphics
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GPU Architecture

Vertex Processing
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Graphics Pipeline

Vertex Programmable Vertex
Q Processing (fp32)

Fragment l Programmable Per-Pixel Memory
Math (fp32)
SR Data F.etch, fp16
_' Blending




Graphics Pipeline

Programmable MIMD
Processing (fp32)

Programmable SIMD Memo
M Processing (fp32) °

Data

Data ' Data Fetch, fp16 Blending
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CPU Architecture (Intel 17)
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CPU Architecture (Intel 17)

/0O, Queue
Cores

Caches

Memory
Controller

“Multicore”
architecture




What if we got rid of everything?
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CPU Architecture

Chip

ALU

Fill this with
AlLUs and FPUs

N —
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GPU Architecture

- Compared to CPUs, GPUs removed all

components that

sped up the execution of single instructions

No pretetching, out of order execution,

branch prediction

and so on, nothing of that: just a minimal context

- All of the remaining chip area can be now filled with ALUSs

and can therefore run multiple threads

- Since GPUs actually share control amo
single instruction is executed by severa
by adding execution units instead of co

Ng Cores, one
threads at once

Ntrol ones
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SIMD Architecture

Many

Shared E Viany

— Independent
= T T

Controls g Execution Units
=
=

Some Shared
Memory —

One Huge
Shared
Memory

GPU

“Manycore”

architecture



Try It Yourself

Use Amazon EC2 or similar for free
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Historical Notes

- When shaders were available, people from academia
started using GPUs for something different from graphics

- Matrix multiplication was easy and developed in 2001,
while LU decomposition was written in 2005

- Back then one had to use OpenGL and DirectX

- Some programming languages emerged,
Sh, but NVidia changed the development

+ In 2007 they released CUDA

ke Brook or

nerspective
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CUDA

- CUDA is acronym for “Compute Unified Device
Architecture”

- It Is a general purpose parallel computing architecture

- |t comprises hardware, compilers (C, C++, ano
FORTRAN), and several libraries

- [t may use several GPUSs, if present on the device

- Obviously, it runs only on NVidia’s hardware (but compiles
on every computer)
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Main Characteristics

- Nvidia suggests to use its extension to common ISO C

+ Threads are a native concept

- CUDA Is a shared memory architecture, and it supports
barriers and synchronization calls

- A CUDA program is GPU “independent” (sort of)

- |t runs the same program on different GPUSs
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Vector Sum

// Kernel definition
__global _ void VecAdd(floatx A, floatx B, floatx C)
{
int 1 = threadIdx.x:
Cli] = Al[i] + BIlil;
¥

int main(void)

{

[/ ..
// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);
// ...
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1 = threadIdx.x

Cli] = A[li] + BI[1i]



Vector Sum

1 = threadIdx.x

C[i] = A[i] + BI[i]

VecAdd<<<1, N>>>(A, B, C);



Vector Sum

1-D block of threads

1 = threadIdx.x

C[i] = A[i] + BI[i]

VecAdd<<<1, N>>>(A, B, C):



What about branches? Single control, multiple threads
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/] e

if (i > 3.1415)
{
[/
}
else
{
[/ s
¥



Branching without Control
Time
/] v

if (i > 3.1415)
{
[/
}
else
{
[/ s
¥



Branching without Control
Time | m=

/] e

if (i > 3.1415)
{
[/
}
else
{
[/ s
¥



Branching without Control

Time | ==

// .
if (i > 3.1415)«
{

// e
}
else
{

// e

}



Sranching without Control

Time %1

[ «ue
Lf (] 3.1415)«




Sranching without Control

Time %1 l
// .
O

0
if (i > 3.1415)«
1

[/
}
else
{

[/ .
¥

|

O —
O —r

o —

O €——
O —
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Sranching without Control
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Cache Effects

- As we removed the control unit and shared among
several execution ones, we're not able to branch

Moreover, we also remove the memory cache
- This means that accessing memory is hugely expensive
However, we built lots and lots of threads

- S50, all these problems are ameliorated by the numbers
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No Caching World

Time thredIdx @...15
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Thread

Slocks

Grid

Block (0, 0)

Block (1, 0)

Block (2, 0)

Block (0, 1)~

Block (1, 1)

“\Block (2, 1)
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Thread

g < > Per-thread local
memory

Thread Block

S

: Per-block shared
> memory
>

AAAA




Memory Model

Grid O

Block (0, 0) Block (1,0) Block (2, 0)

g <« > Per-thread local ggggggggﬁ gggggggz

mem
emory Block (0,1) Block(1,1) Block(2,1)

i

Grid 1
Global memory
Block (0, 0) Block (1, 0)
Thread Block le >
» > Per-block shared
: : UL Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)



Memory Model

Thread
g <« > Per-thread local

memory

Thread Block

S

Per-block shared
memory

AAAA
VVYVY

In Nvidia’s jargon, 32
threads are called a warp

Grid O

Block (0, 0) Block (1, 0)

Block (0, 1) Block(1,1)

Grid 1

Block (0, 0)
Block (0, 1)

Block (0, 2)

il

Block (1, 0)
Block (1, 1)

Block (1, 2)

il

Block (2, 0)

-—
Block (2, 1)

Global memory
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Limits and Threads

- Nvidia uses threads and blocks Iin a grid to help
programmers map their problem to the GPU

- The number of threads per block is limited by the
hardware

- Nowadays, GPUs may support 512 threads per block
- Kernels can be executed simultaneously in several blocks

- Blocks can be arranged in arrays or grids, as developers
see suitable for their case
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Blocks and Warps: Scheduling

- Blocks are identified by a variable called blockIdx
-+ Each block can run a limited number of threads

- A warp is a group of 32 threads: this helps the hardware
scheduler to execute a huge number of threads

- Developers have no influence on the scheduler except for
synchronization between threads

+ Each grid can be 1D, 2D, or 3D although this is just
convenient from the programmer’s point of view
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Jobs with CUDA

- Physics and Graphics

- Scientific Communities

- Bioinformatics and Healthcare
- Finance and Economy

- Audio-video Processors

- Computer Vision and Imaging
- Al (e.g., DeepMind

- Cryptography and Security

- (and the list goes on...)
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- Actually not everything is suitable for the GPUs, but where it
can be applied, it's fast

-+ Rendering (raytracing): 60x

- Al (classification of neurons in Electron Microscopy): 60x
- Lattice-Boltzmann (cardiac flow): 500x

- Basically, when linear algebra is involved, it’s fast

- Just to know, almost everything is modeled with linear algebra



