GPU Programming

Introduction and Historical Notes

Franco Milicchio

https://fmilicchio.bitbucket.io

Perspective

A Perspective

Parallel computing Is ubiquitous, but it is not new at all

A Perspective

- Parallel computing is ubiquitous, but It is not new at all

- Astonishingly, the Analytical Engine by Charles Babbage in
~1837 was a parallel computer

A Perspective

- Parallel computing is ubiquitous, but It is not new at all

- Astonishingly, the Analytical Engine by Charles Babbage in
~1837 was a parallel computer

- In 1958 parallel computing was introduced by S. Gill
introducing branching and waiting, while at IBM J. Cocke
and D. Slotnick discussed parallelism in numerical
calculations

A Perspective

- Parallel computing is ubiquitous, but It is not new at all

- Astonishingly, the Analytical Engine by Charles Babbage in
~1837 was a parallel computer

- In 1958 parallel computing was introduced by S. Gill
introducing branching and waiting, while at IBM J. Cocke
and D. Slotnick discussed parallelism in numerical

calculations

- The D825 by Burroughs Corporation, introduced n 1962,
was the first modern parallel computer with four-processors

History of G

PUs

History of GPUs

- In the 1970s computers were bulky and graphics was
completely neglected

History of GPUs

- In the 1970s computers were bulky and graphics was
completely neglected

+ One sector, however, was interested in graphics: games

History of GPUs

- In the 1970s computers were bulky and graphics was
completely neglected

+ One sector, however, was interested in graphics: games

- The industry was driven by arcade games, e.g., Namco,
Taito, and many others

History of GPUs

- In the 1970s computers were bulky and graphics was
completely neglected

+ One sector, however, was interested in graphics: games

- The industry was driven by arcade games, e.g., Namco,
Taito, and many others

- The 1980s brought a great innovation with the Amiga PC

History of GPUs

- In the 1970s computers were bulky and graphics was
completely neglected

+ One sector, however, was interested in graphics: games

'he iIndustry was driven by arcade games, e.q., Namco,
aito, and many others

- The 1980s brought a great innovation with the Amiga PC

- Things changed greatly in the 1990s

e —

»

AULTIMNER 0 A

| "9

© 1996

KLY

.

J J

! 33

e

OO EE D T
¢ sopooesecoedeoneen

»J:nrja
MPEG CONNECTOR R

JiB

5 o= ™
e It B s 4
s A e
=== "7 r‘l
R22 LS
FB4 FBS ce [t j’~ k23
c . 2 c27
,@. QP c25 RO Y,
'/' ‘lp ET),
o Foma 10t
4 3 Je S 5};';0’] TN
22 ¢3 [FE[F a lhi_lucn, 2
o RS0 |! ”|C28 —— L rRpy: -
my C75 C7T D4 99 =1 :
I RY7
‘SN C50
LR ™ O
B C51 oS
4 RS1
ST 9 s
)| C74
— I
o4 e [CH rvrrrv:vc 47 -
5SS 9 e R
v 0] re Gu 88
—— e ~
N Eee a TN RREYY ?L:%’-
; 4 (] | {5t ac A)_Jm HAY
A EEXEEEYX 1 3
W EILEEEYTERETRETEE R | . pi
2 L= ol i
_ ﬂfm —
s\ C

{
i
|

-

1
L
|

U IR

LIGL’ f] (
rjRPl

.,“nl

C51

I
L nunuu i lcno i u

Hb M

‘4

I

lf'u;

cr7

FCC DR TUPCIOZO4M

L L L I R I I)

(

{ﬁlh m 3F

LR |

: .

. .

p .

3 .

p .

: :

: .

2 »

.

: .

»

: .

. .

. : »

.S »

. .

-y .

=i .

cas [
C67

Uju ‘3’9
4./J
S‘Ol o
' CH

nn e 1‘" —gg
=
L

-ll‘!llllllll!'lllll}ll IllHlIlleHl'N

! ';X;Jl' ' 'I E&e o
. e el
3 92 “gpy

ci6 Em R56 asz ass fn

L L B I R R R N)

vio ces[vF

o
.-
o

= QS
2

. ~

» »

. »

- ~

s .

» »

- »

- :

» »

| :

- -

| - .
c3s[v

[*4jess

C18)J

€66
U vl

L I I
L R R R R A R IR R]
R N R I]

LA O B R I I I]

n-j.'_

L

64

T

R6 a3

The World I1s 3

The World is 3D

- The 1990s saw a plethora of graphics cards with different
performances (S3, ATl, Matrox, Nvidia, ...)

The World is 3D

- The 1990s saw a plethora of graphics cards with different
performances (S3, ATl, Matrox, Nvidia, ...)

-+ They were fixed functions, hence you had to write games
specifically for each of them

The World is 3D

- The 1990s saw a plethora of graphics cards with different
performances (S3, ATl, Matrox, Nvidia, ...)

-+ They were fixed functions, hence you had to write games
specifically for each of them

- Then, progressively, fixed functions were replaced by
programmable functions

The World is 3D

- The 1990s saw a plethora of graphics cards with different
performances (S3, ATl, Matrox, Nvidia, ...)

-+ They were fixed functions, hence you had to write games
specifically for each of them

- Then, progressively, fixed functions were replaced by
programmable functions

- Now we know them by the term “GPUSs” (thanks to
Nvidia’s marketing team)

How Speed Changed

How Speed Changed

- Over the last decades, CPUs relied on clock speed to
INncrease performances

How Speed Changed

- Qver the last decades, CPUs relied on clock speed to
INncrease performances

- There is a recent flat rate of growth among all CPU
vendors

How Speed Changed

- Qver the last decades, CPUs relied on clock speed to
INncrease performances

- There is a recent flat rate of growth among all CPU
vendors

- As it's now known In industry: the free lunch is over

How Speed Changed

- Qver the last decades, CPUs relied on clock speed to
INncrease performances

- There is a recent flat rate of growth among all CPU
vendors

- As it's now known In industry: the free lunch is over

- An increasing GPU market propelled investments in
research in many areas

How Speed Changed

- Qver the last decades, CPUs relied on clock speed to
INncrease performances

- There is a recent flat rate of growth among all CPU
vendors

- As it's now known In industry: the free lunch is over

- An increasing GPU market propelled investments in
research in many areas

+ The trend is obviously rising for GPUSs, flat for CPUs

CPU Clock Rate

O Clock Rate (MHz)

10000

1000

100

10

0.74

0.1
1971 1974 1976 1979 1982 1986 1989 1995 1998 1999 2000 2005 2009

CPU Clock Rate

O Clock Rate (MHz)

10000
1000 3000 3700
100
—
10
1 Nothing
0.74 New here

0.1
1971 1974 1976 1979 1982 1986 1989 1995 1998 1999 2000 2005 2009

CPU Clock Rate

O Clock Rate (MHz)

10000

1000

100

10

074 New here

0.1
1971 1974 1976 1979 1982 1986 1989 1996 1998 1999 2000 2005 2009

TeraHertz”?

Cost of Performances

$145,000,000,000.00

10000000000
100000000
1000000
10000

100

1

0.01
1961

1984

1997

$42,000,000.00

$42,000.00

$1,300.00

2000

2003

O GFLOP Cost (USD)

2007

$1.80

2011

$0.16

2013

$0.06

2017

GFLOPs

O GPU O CPU

12000
9000
6000

3000

0
1/2003 4/2004 3/2006 5/2007 1/2009 5/2013 9/2015 4/2017

Who uses GPUs?

TL;DR:
everyone, even if you don’t know

Speedup

Speedup

- How fast we can go Is highly dependent on how we
implement an algorithm

Speedup

- How fast we can go Is highly dependent on how we
implement an algorithm

- Physical architectures for high performances matter a lot
and without that knowledge you won’t be fast

Speedup

- How fast we can go Is highly dependent on how we
implement an algorithm

- Physical architectures for high performances matter a lot
and without that knowledge you won’t be fast

- Let’s see now how a GPU works

Speedup

- How fast we can go Is highly dependent on how we
implement an algorithm

- Physical architectures for high performances matter a lot
and without that knowledge you won’t be fast

- Let’s see now how a GPU works

- After, we will see how we can use GPU to achieve way
more of just graphics

1235779 258973
2552055 534353
404201 434201

t‘ Shadic b S a NS g T
e, .
; !,g'. ','Q——n:" 1 B e L :ﬁ-a—

it R TR]

VertiCGS, Ce”S, Textures This mesh will be rendered into pixels

GPU Architecture

Vertex Processing
L,_ —— ._,_*_,—I_,_ —
Cull / Clip / Setup
Y
> Z-Cull <> Rasterization
Y y Y L
Texture and -
Fragment Processing B I: | I: I Texture Cache
L 1 |
]
Fragment Crossbar
I
Y Y Y Y Y Y Y Y Y Y Y Y Y Y V¥

Z-Compare
and Blend — F i:

| S S S S SRR SR SN SN SN SUN SN S S S

Y Y Y Y
Memory Memory Memory Memory
Partition Part1tlon Partition Partition

e]] -

Graphics Pipeline

Vertex Programmable Vertex
Q Processing (fp32)

Fragment l Programmable Per-Pixel Memory
Math (fp32)
SR Data F.etch, fp16
_' Blending

Graphics Pipeline

Programmable MIMD
Processing (fp32)

Programmable SIMD Memo
M Processing (fp32) °

Data

Data ' Data Fetch, fp16 Blending

P Architecture (Intel 17

THE R TITFEIEEs "‘ ‘-"“—“ff‘?’d . P’J‘J‘"""““-&"—"“‘r"“"‘“" A A AR T EETEESEETS T AL T HT T ETHTETRTETETESTE TGI8

!
SIIRIREIIR T SATXIIRERY i SEEEIXEERY TXTIXTESRE? ZXEXTLCLCRXEETE] 1 — SR A
SSIXTLR | -SRITTFXNT - b=

!!!Em FEEEEEEE B ‘-—Q L
!l!-ﬂ--n--l-lh----m £

- - --

_I..--.In i‘l.......l E
!..l.l.lll...l“.llll!

= _-mnln -I.--I ..-l S
TSNS SN FES S e -

: . e . e M i -
3 : 85 -} e : B -1
S [] T e—
—_m-.-mm“.lIIE«: o B

P Architecture (Intel 17

O r< ’ : ; L = s = .“"‘ N TTLETL . TEL I EAEELHNE DU TE AR ETHNELEEL FEELEATETEETEEEET] T AL T HT T ETHTETRTETETESTE TGI8
EELEEEEREY SRR R i MAEEEEIXEELY TXEXETESES! ZEEXTXTEETXREER] 1 sessssssnsssnssss

T TEONEDE FEE W R R
e . O

BEEFE AW T e B e~
149 53 ¥ I6 S N 5 0 N G e O R S

R SR A R
NN S NN NN

. : . : . ’ . +
|
- L R S AR B T R W R
TSNS SN PSS .

-— .-

.- —

- . !) e . - . . ‘ -
£ SHI IS A it EE : |
- L R T s S S [8 A i
- S]

-SeNX TN Nt il

P Architecture (Intel 17

(:O I < ’: ; T¥ETY "‘i'-'.’—'":"‘ N TTLETL » TEL I EAEELHNE DU TE AR ETHNELEEL FEELEATETEETEEEET] , T AL T HT T ETHTETRTETETESTE TGI8
EELXITEY SRR TERE: S EEERIEEERY REREEEIEY EERREERRRRERER] 1 - o R R

OO NS EEEEE
R . SO

—
BEEHFE A E T e 5N e

R SR A R
SN R
-

T T
L. 3 330 3t 3 3l f PR b b R b

E . y

- L R S AR B T R W R
‘ |
TSNS SN e

- - -

: . e . (S . i
- D B N M S [N R AT N T T E -
-]

A athes L JUE PV Lo WP

Memory
Controller

CPU Architecture (Intel 17)

/0O, Queue
Cores

‘—--unmm R -
[!lll-l---__""" EREES]

R S R T R e TR A R R
149 53 ¥ I6 S N 5 0 N G e O R S

-----.- n-n-- nn :

.- —

]
m —-nnn-n .
g3t iy m--m .

NG T -....:--“

Memory
Controller

CPU Architecture (Intel 17)

/0O, Queue

Cores

Caches

Memory
Controller

CPU Architecture (Intel 17)

/0O, Queue
Cores

Caches

Memory
Controller

“Multicore”
architecture

What if we got rid of everything?

PU Architecture

PU Architecture

Chip

PU Architecture

Chip

PU Architecture

NS Chip

PU Architecture

NS Chip

PU Architecture

NS Chip

Memory Ctrl

PU Architecture

AL Chip

Memory Ctrl Load/Store

PU Architecture

AL Chip

Prefetch

Memory Ctrl Load/Store

PU Architecture

AL Chip

Context Prefetch

Memory Ctrl Load/Store

PU Architecture

Chip

Context Prefetch

Memory Ctrl Load/Store

PU Architecture

Chip

Context Prefetch

Memory Ctrl Load/Store

PU Architecture

Chip

ALU

CPU Architecture

Chip

ALU

Fill this with
AlLUs and FPUs

N —

PU Architecture

GPU Architecture

- Compared to CPUs, GPUs removed all components that
sped up the execution of single instructions

GPU Architecture

- Compared to CPUs, GPUs removed all components that
sped up the execution of single instructions

- No prefetching, out of order execution, branch prediction
and so on, nothing of that: just a minimal context

GPU Architecture

- Compared to CPUs, GPUs removed all components that
sped up the execution of single instructions

- No prefetching, out of order execution, branch prediction
and so on, nothing of that: just a minimal context

- All of the remaining chip area can be now filled with ALUSs
and can therefore run multiple threads

GPU Architecture

- Compared to CPUs, GPUs removed all

components that

sped up the execution of single instructions

No pretetching, out of order execution,

branch prediction

and so on, nothing of that: just a minimal context

- All of the remaining chip area can be now filled with ALUSs

and can therefore run multiple threads

- Since GPUs actually share control amo
single instruction is executed by severa
by adding execution units instead of co

Ng Cores, one
threads at once

Ntrol ones

SIMD Architecture

=
o
_G

SIMD Architecture

Many

IndependenT
Execution Units

FEEEEERE

GPU

SIMD Architecture

Many - Many

Shared —

Independent

—> «— . .

Controls — Execution Units

—
-
-
-

GPU

SIMD Architecture

Many - Many
Shared mn
Independent
Controls - 7 P

Execution Units

Some Shared

FELE

<
D
S
e
T[

GPU

SIMD Architecture

Many

Shared E Viany

— Independent
= T T

Controls g Execution Units
=
=

Some Shared
Memory —

One Huge
Shared
Memory

GPU

SIMD Architecture

Many

Shared E Viany

— Independent
= T T

Controls g Execution Units
=
=

Some Shared
Memory —

One Huge
Shared
Memory

GPU

“Manycore”

architecture

Try It Yourself

Use Amazon EC2 or similar for free

Historical Notes

Historical Notes

- When shaders were available, people from academia
started using GPUs for something different from graphics

Historical Notes

- When shaders were available, people from academia
started using GPUs for something different from graphics

- Matrix multiplication was easy and developed in 2001,
while LU decomposition was written in 2005

Historical Notes

- When shaders were available, people from academia
started using GPUs for something different from graphics

- Matrix multiplication was easy and developed in 2001,
while LU decomposition was written in 2005

- Back then one had to use OpenGL and DirectX

Historical Notes

- When shaders were available, people from academia
started using GPUs for something different from graphics

- Matrix multiplication was easy and developed in 2001,
while LU decomposition was written in 2005

- Back then one had to use OpenGL and DirectX

- Some programming languages emerged,
Sh, but NVidia changed the development

ke Brook or

nerspective

Historical Notes

- When shaders were available, people from academia
started using GPUs for something different from graphics

- Matrix multiplication was easy and developed in 2001,
while LU decomposition was written in 2005

- Back then one had to use OpenGL and DirectX

- Some programming languages emerged,
Sh, but NVidia changed the development

+ In 2007 they released CUDA

ke Brook or

nerspective

CU

DA

CUDA

- CUDA is acronym for “Compute Unified Device
Architecture”

CUDA

- CUDA is acronym for “Compute Unified Device
Architecture”

- It Is a general purpose parallel computing architecture

CUDA

- CUDA is acronym for “Compute Unified Device
Architecture”

- It Is a general purpose parallel computing architecture

- |t comprises hardware, compilers (C, C++, ano
FORTRAN), and several libraries

CUDA

- CUDA is acronym for “Compute Unified Device
Architecture”

- It Is a general purpose parallel computing architecture

- |t comprises hardware, compilers (C, C++, ano
FORTRAN), and several libraries

- [t may use several GPUSs, if present on the device

CUDA

- CUDA is acronym for “Compute Unified Device
Architecture”

- It Is a general purpose parallel computing architecture

- |t comprises hardware, compilers (C, C++, ano
FORTRAN), and several libraries

- [t may use several GPUSs, if present on the device

- Obviously, it runs only on NVidia’s hardware (but compiles
on every computer)

Main Characteristics

Main Characteristics

Nvidia suggests to use its extension to common ISO C

Main Characteristics

Nvidia suggests to use its extension to common ISO C

Threads are a native concept

Main Characteristics

Nvidia suggests to use its extension to common ISO C

Threads are a native concept

- CUDA Is a shared memory architecture, and it supports
barriers and synchronization calls

Main Characteristics

- Nvidia suggests to use its extension to common ISO C

+ Threads are a native concept

- CUDA Is a shared memory architecture, and it supports
barriers and synchronization calls

- A CUDA program is GPU “independent” (sort of)

Main Characteristics

- Nvidia suggests to use its extension to common ISO C

+ Threads are a native concept

- CUDA Is a shared memory architecture, and it supports
barriers and synchronization calls

- A CUDA program is GPU “independent” (sort of)

- |t runs the same program on different GPUSs

Vector Sum

Vector Sum

// Kernel definition
__global _ void VecAdd(floatx A, floatx B, floatx C)
{
int 1 = threadIdx.x:
Cli] = Al[i] + BIlil;
¥

int main(void)

{

[/
// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C):
[/ e
s

Vector Sum

// Kernel definition
__global _ void VecAdd(floatx A, floatx B, floatx C)
{
int 1 = threadIdx.x:
Cli] = Al[i] + BIlil;
¥

int main(void)

{

[/ ..
// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);
// ...

Vector Sum

Vector Sum

Vector Sum

Vector Sum

Vector Sum

1 = threadIdx.x

Vector Sum

1 = threadIdx.x

Cli] = A[li] + BI[1i]

Vector Sum

1 = threadIdx.x

Cli] = A[li] + BI[1i]

Vector Sum

1 = threadIdx.x

C[i] = A[i] + BI[i]

VecAdd<<<1, N>>>(A, B, C);

Vector Sum

1-D block of threads

1 = threadIdx.x

C[i] = A[i] + BI[i]

VecAdd<<<1, N>>>(A, B, C):

What about branches? Single control, multiple threads

Branching without Control

Branching without Control

/] e

if (i > 3.1415)
{
[/
}
else
{
[/ s
¥

Branching without Control
Time
/] v

if (i > 3.1415)
{
[/
}
else
{
[/ s
¥

Branching without Control
Time | m=

/] e

if (i > 3.1415)
{
[/
}
else
{
[/ s
¥

Branching without Control

Time | ==

// .
if (i > 3.1415)«
{

// e
}
else
{

// e

}

Sranching without Control

Time %1

[«ue
Lf (] 3.1415)«

Sranching without Control

Time %1 l
// .
O

0
if (i > 3.1415)«
1

[/
}
else
{

[/ .
¥

|

O —
O —r

o —

O €——
O —

Sranching without Control

Sranching without Control

OOOOOOOOOOOOOOOO

Cache Effects

Cache Effects

- As we removed the control unit and shared among
several execution ones, we're not able to branch

Cache Effects

- As we removed the control unit and shared among
several execution ones, we're not able to branch

Moreover, we also remove the memory cache

Cache Effects

- As we removed the control unit and shared among
several execution ones, we're not able to branch

Moreover, we also remove the memory cache

- This means that accessing memory is hugely expensive

Cache Effects

- As we removed the control unit and shared among
several execution ones, we're not able to branch

Moreover, we also remove the memory cache
- This means that accessing memory is hugely expensive

However, we bullt lots and lots ot threads

Cache Effects

- As we removed the control unit and shared among
several execution ones, we're not able to branch

Moreover, we also remove the memory cache
- This means that accessing memory is hugely expensive
However, we built lots and lots of threads

- S50, all these problems are ameliorated by the numbers

No Caching World

No Caching World

Time

No Caching World

Time thredIdx 0...15

No Caching World

Time thredIdx 0...15

I

No Caching World

Time

thredIdx 0...15

Jil

|

Il

]

|

Il

nredIdx 16..

.31

L]
[

L]

L]

No Caching World

Time thredIdx @...15

L | s

thredIdx 0...15

1

Thread

Slocks

Grid

Block (0, 0)

Block (1, 0)

Block (2, 0)

Block (0, 1)~

Block (1, 1)

“\Block (2, 1)

Memory Model

Memory Model

Thread
g < > Per-thread local

memory

Memory Model

Thread

g < > Per-thread local
memory

Thread Block

S

: Per-block shared
> memory
>

AAAA

Memory Model

Grid O

Block (0, 0) Block (1,0) Block (2, 0)

g <« > Per-thread local ggggggggﬁ gggggggz

mem
emory Block (0,1) Block(1,1) Block(2,1)

i

Grid 1
Global memory
Block (0, 0) Block (1, 0)
Thread Block le >
» > Per-block shared
: : UL Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)

Memory Model

Thread
g <« > Per-thread local

memory

Thread Block

S

Per-block shared
memory

AAAA
VVYVY

In Nvidia’s jargon, 32
threads are called a warp

Grid O

Block (0, 0) Block (1, 0)

Block (0, 1) Block(1,1)

Grid 1

Block (0, 0)
Block (0, 1)

Block (0, 2)

il

Block (1, 0)
Block (1, 1)

Block (1, 2)

il

Block (2, 0)

-—
Block (2, 1)

Global memory

Limits and Threads

Limits and Threads

- Nvidia uses threads and blocks Iin a grid to help
programmers map their problem to the GPU

Limits and Threads

- Nvidia uses threads and blocks Iin a grid to help
programmers map their problem to the GPU

- The number of threads per block is limited by the
hardware

Limits and Threads

- Nvidia uses threads and blocks Iin a grid to help
programmers map their problem to the GPU

- The number of threads per block is limited by the
hardware

- Nowadays, GPUs may support 512 threads per block

Limits and Threads

- Nvidia uses threads and blocks Iin a grid to help
programmers map their problem to the GPU

- The number of threads per block is limited by the
hardware

- Nowadays, GPUs may support 512 threads per block

- Kernels can be executed simultaneously in several blocks

Limits and Threads

- Nvidia uses threads and blocks Iin a grid to help
programmers map their problem to the GPU

- The number of threads per block is limited by the
hardware

- Nowadays, GPUs may support 512 threads per block
- Kernels can be executed simultaneously in several blocks

- Blocks can be arranged in arrays or grids, as developers
see suitable for their case

Blocks and Warps: Scheduling

Blocks and Warps: Scheduling

- Blocks are identified by a variable called blockIdx

Blocks and Warps: Scheduling

- Blocks are identified by a variable called blockIdx

- Each block can run a limited number of threads

Blocks and Warps: Scheduling

- Blocks are identified by a variable called blockIdx
-+ Each block can run a limited number of threads

- A warp is a group of 32 threads: this helps the hardware
scheduler to execute a huge number of threads

Blocks and Warps: Scheduling

- Blocks are identified by a variable called blockIdx

- Each block can run a limited number of threads

- A warp is a group of 32 threads: this helps the hardware
scheduler to execute a huge number of threads

- Developers have no influence on the scheduler except for
synchronization between threads

Blocks and Warps: Scheduling

- Blocks are identified by a variable called blockIdx
-+ Each block can run a limited number of threads

- A warp is a group of 32 threads: this helps the hardware
scheduler to execute a huge number of threads

- Developers have no influence on the scheduler except for
synchronization between threads

+ Each grid can be 1D, 2D, or 3D although this is just
convenient from the programmer’s point of view

Jobs with CUDA

4*".
%

Jobs with CUDA

 Physics and Graphics

4*".
%

Jobs with CUDA

 Physics and Graphics

- Scientific Communities

4*".
%

Jobs with CUDA

 Physics and Graphics
- Scientific Communities

- Bioinformatics and Healthcare

Jobs with CUDA

- Physics and Graphics
- Scientific Communities
- Bioinformatics and Healthcare

- Finance and Economy

Jobs with CUDA

- Physics and Graphics

- Scientific Communities

- Bioinformatics and Healthcare
- Finance and Economy

- Audio-video Processors

Jobs with CUDA

 Physics and Graphics

- Scientific Communities

- Bioinformatics and Healthcare
- Finance and Economy

- Audio-video Processors

- Computer Vision and Imaging

Jobs with CUDA

- Physics and Graphics

- Scientific Communities

- Bioinformatics and Healthcare
- Finance and Economy

- Audio-video Processors

- Computer Vision and Imaging

- Al (e.g., DeepMind

Jobs with CUDA

 Physics and Graphics

- Scientific Communities

- Bioinformatics and Healthcare
- Finance and Economy

- Audio-video Processors

- Computer Vision and Imaging
- Al (e.g., DeepMind

- Cryptography and Security

Jobs with CUDA

- Physics and Graphics

- Scientific Communities

- Bioinformatics and Healthcare
- Finance and Economy

- Audio-video Processors

- Computer Vision and Imaging
- Al (e.g., DeepMind

- Cryptography and Security

- (and the list goes on...)

Speedup

Speedup

- Actually not everything is suitable for the GPUs, but where it
can be applied, it's fast

Speedup

- Actually not everything is suitable for the GPUs, but where it
can be applied, it's fast

+ Rendering (raytracing): 60x

Speedup

- Actually not everything is suitable for the GPUs, but where it
can be applied, it's fast

+ Rendering (raytracing): 60x

- Al (classification of neurons in Electron Microscopy): 60x

Speedup

- Actually not everything is suitable for the GPUs, but where it
can be applied, it's fast

-+ Rendering (raytracing): 60x
- Al (classification of neurons in Electron Microscopy): 60x

- Lattice-Boltzmann (cardiac flow): 500x

Speedup

- Actually not everything is suitable for the GPUs, but where it
can be applied, it's fast

-+ Rendering (raytracing): 60x
- Al (classification of neurons in Electron Microscopy): 60x
- Lattice-Boltzmann (cardiac flow): 500x

- Basically, when linear algebra is involved, it’s fast

Speedup

- Actually not everything is suitable for the GPUs, but where it
can be applied, it's fast

-+ Rendering (raytracing): 60x

- Al (classification of neurons in Electron Microscopy): 60x
- Lattice-Boltzmann (cardiac flow): 500x

- Basically, when linear algebra is involved, it’s fast

- Just to know, almost everything is modeled with linear algebra

