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• Parallel computing is ubiquitous, but it is not new at all

• Astonishingly, the Analytical Engine by Charles Babbage in 
~1837 was a parallel computer

• In 1958 parallel computing was introduced by S. Gill 
introducing branching and waiting, while at IBM J. Cocke 
and D. Slotnick discussed parallelism in numerical 
calculations

• The D825 by Burroughs Corporation, introduced n 1962, 
was the first modern parallel computer with four-processors 
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History of GPUs

• In the 1970s computers were bulky and graphics was 
completely neglected

• One sector, however, was interested in graphics: games

• The industry was driven by arcade games, e.g., Namco, 
Taito, and many others

• The 1980s brought a great innovation with the Amiga PC

• Things changed greatly in the 1990s
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The World is 3D

• The 1990s saw a plethora of graphics cards with different 
performances (S3, ATI, Matrox, Nvidia, …)

• They were fixed functions, hence you had to write games 
specifically for each of them

• Then, progressively, fixed functions were replaced by 
programmable functions

• Now we know them by the term “GPUs” (thanks to 
Nvidia’s marketing team)
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• Over the last decades, CPUs relied on clock speed to 
increase performances

• There is a recent flat rate of growth among all CPU 
vendors

• As it’s now known in industry: the free lunch is over

• An increasing GPU market propelled investments in 
research in many areas

• The trend is obviously rising for GPUs, flat for CPUs

How Speed Changed
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Who uses GPUs?

TL;DR: 
everyone, even if you don’t know
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• How fast we can go is highly dependent on how we 
implement an algorithm

• Physical architectures for high performances matter a lot 
and without that knowledge you won’t be fast

• Let’s see now how a GPU works

• After, we will see how we can use GPU to achieve way 
more of just graphics

Speedup



Vertices, Cells, Textures This mesh will be rendered into pixels



GPU Architecture

474

First, commands, textures, and vertex data are received from the host CPU through
shared buffers in system memory or local frame-buffer memory. A command stream is
written by the CPU, which initializes and modifies state, sends rendering commands, and
references the texture and vertex data. Commands are parsed, and a vertex fetch unit is
used to read the vertices referenced by the rendering commands. The commands, vertices,
and state changes flow downstream, where they are used by subsequent pipeline stages.

The vertex processors (sometimes called “vertex shaders”), shown in Figure 30-4, allow
for a program to be applied to each vertex in the object, performing transformations,
skinning, and any other per-vertex operation the user specifies. For the first time, a
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Figure 30-3. A Block Diagram of the GeForce 6 Series Architecture
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independent memory partitions give the GPU a wide (256 bits), flexible memory sub-
system, allowing for streaming of relatively small (32-byte) memory accesses at near the
35 GB/sec physical limit.

30.2.2 Functional Block Diagram for Non-Graphics Operations
As graphics hardware becomes more and more programmable, applications unrelated to
the standard polygon pipeline (as described in the preceding section) are starting to
present themselves as candidates for execution on GPUs.

Figure 30-6 shows a simplified view of the GeForce 6 Series architecture, when used as a
graphics pipeline. It contains a programmable vertex engine, a programmable fragment
engine, a texture load/filter engine, and a depth-compare/blending data write engine.

In this alternative view, a GPU can be seen as a large amount of programmable floating-
point horsepower and memory bandwidth that can be exploited for compute-intensive
applications completely unrelated to computer graphics.

Figure 30-7 shows another way to view the GeForce 6 Series architecture. When used for
non-graphics applications, it can be viewed as two programmable blocks that run serially:
the vertex processor and the fragment processor, both with support for fp32 operands and
intermediate values. Both use the texture unit as a random-access data fetch unit and access
data at a phenomenal 35 GB/sec (550 MHz DDR memory clock � 256 bits per clock
cycle � 2 transfers per clock cycle). In addition, both the vertex and the fragment processor
are highly computationally capable. (Performance details follow in Section 30.4.)

Chapter 30 The GeForce 6 Series GPU Architecture

Figure 30-6. The GeForce 6 Series Architecture Viewed as a Graphics Pipeline

430_gems2_ch30_new.qxp  1/31/2005  6:57 PM  Page 478

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

Graphics Pipeline



478

independent memory partitions give the GPU a wide (256 bits), flexible memory sub-
system, allowing for streaming of relatively small (32-byte) memory accesses at near the
35 GB/sec physical limit.

30.2.2 Functional Block Diagram for Non-Graphics Operations
As graphics hardware becomes more and more programmable, applications unrelated to
the standard polygon pipeline (as described in the preceding section) are starting to
present themselves as candidates for execution on GPUs.

Figure 30-6 shows a simplified view of the GeForce 6 Series architecture, when used as a
graphics pipeline. It contains a programmable vertex engine, a programmable fragment
engine, a texture load/filter engine, and a depth-compare/blending data write engine.

In this alternative view, a GPU can be seen as a large amount of programmable floating-
point horsepower and memory bandwidth that can be exploited for compute-intensive
applications completely unrelated to computer graphics.

Figure 30-7 shows another way to view the GeForce 6 Series architecture. When used for
non-graphics applications, it can be viewed as two programmable blocks that run serially:
the vertex processor and the fragment processor, both with support for fp32 operands and
intermediate values. Both use the texture unit as a random-access data fetch unit and access
data at a phenomenal 35 GB/sec (550 MHz DDR memory clock � 256 bits per clock
cycle � 2 transfers per clock cycle). In addition, both the vertex and the fragment processor
are highly computationally capable. (Performance details follow in Section 30.4.)

Chapter 30 The GeForce 6 Series GPU Architecture

Figure 30-6. The GeForce 6 Series Architecture Viewed as a Graphics Pipeline

430_gems2_ch30_new.qxp  1/31/2005  6:57 PM  Page 478

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

Graphics Pipeline

The vertex processor operates on data, passing it directly to the fragment processor, or
by using the rasterizer to expand the data into interpolated values. At this point, each
triangle (or point) from the vertex processor has become one or more fragments.

Before a fragment reaches the fragment processor, the z-cull unit compares the pixel’s
depth with the values that already exist in the depth buffer. If the pixel’s depth is
greater, the pixel will not be visible, and there is no point shading that fragment, so the
fragment processor isn’t even executed. (This optimization happens only if it’s clear that
the fragment processor isn’t going to modify the fragment’s depth.) Thinking in a 
general-purpose sense, this early culling feature makes it possible to quickly decide to
skip work on specific fragments based on a scalar test. Chapter 34 of this book, “GPU
Flow-Control Idioms,” explains how to take advantage of this feature to efficiently
predicate work for general-purpose computations. 

After the fragment processor runs on a potential pixel (still a “fragment” because it has
not yet reached the frame buffer), the fragment must pass a number of tests in order to
move farther down the pipeline. (There may also be more than one fragment that
comes out of the fragment processor if multiple render targets [MRTs] are being used.
Up to four MRTs can be used to write out large amounts of data—up to 16 scalar
floating-point values at a time, for example—plus depth.)

First, the scissor test rejects the fragment if it lies outside a specified subrectangle of the
frame buffer. Although the popular graphics APIs define scissoring at this location in the
pipeline, it is more efficient to perform the scissor test in the rasterizer. Scissoring in x and
y actually happens in the rasterizer, before fragment processing, and z scissoring happens

30.2 Overall System Architecture 479

Figure 30-7. The GeForce 6 Series Architecture for Non-Graphics Applications
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• Compared to CPUs, GPUs removed all components that 
sped up the execution of single instructions

• No prefetching, out of order execution, branch prediction 
and so on, nothing of that: just a minimal context 

• All of the remaining chip area can be now filled with ALUs 
and can therefore run multiple threads

• Since GPUs actually share control among cores, one 
single instruction is executed by several threads at once 
by adding execution units instead of control ones

GPU Architecture
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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Try It Yourself

Use Amazon EC2 or similar for free
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• When shaders were available, people from academia 
started using GPUs for something different from graphics

• Matrix multiplication was easy and developed in 2001, 
while LU decomposition was written in 2005

• Back then one had to use OpenGL and DirectX

• Some programming languages emerged, like Brook or 
Sh, but NVidia changed the development perspective

• In 2007 they released CUDA

Historical Notes
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• CUDA is acronym for “Compute Unified Device 
Architecture”

• It is a general purpose parallel computing architecture

• It comprises hardware, compilers (C, C++, and 
FORTRAN), and several libraries

• It may use several GPUs, if present on the device

• Obviously, it runs only on NVidia’s hardware (but compiles 
on every computer)
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Main Characteristics

• Nvidia suggests to use its extension to common ISO C

• Threads are a native concept

• CUDA is a shared memory architecture, and it supports 
barriers and synchronization calls

• A CUDA program is GPU “independent” (sort of)

• It runs the same program on different GPUs
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// Kernel definition 
__global__ void VecAdd(float* A, float* B, float* C) 
{ 
   int i = threadIdx.x; 
   C[i] = A[i] + B[i]; 
} 

int main(void) 
{ 
   // ... 
   // Kernel invocation with N threads 
   VecAdd<<<1, N>>>(A, B, C); 
   // ... 
}
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1-D block of threads



What about branches? Single control, multiple threads
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   { 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 
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Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

   
   
   
   
   
   
   
   

GPU!

thredIdx 0...15



No Caching World

Time

 Chapter(1.(Introduction!
!

 

CUDA(Programming(Guide(Version(3.0! ! 3 
!

 

 

Figure(1>2.( The(GPU(Devotes(More(Transistors(to(Data(
Processing(

 

More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel 
computing architecture � with a new parallel programming model and instruction 
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 
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More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations � the same program is executed on many 
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
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The number of threads per block and the number of blocks per grid specified in the 
<<<�>>> syntax can be of type int or dim3.  Two-dimensional blocks or grids can 
be specified as in the example above. 

Each block within the grid can be identified by a one-dimensional or two-
dimensional index accessible within the kernel through the built-in blockIdx 
variable. The dimension of the thread block is accessible within the kernel through 
the built-in blockDim variable. 

Extending the previous MatAdd() example to handle multiple blocks, the code 
becomes as follows. 
//"Kernel"definition"
__global__"void"MatAdd(float"A[N][N],"float"B[N][N],"
"""""""""""""""""""""""float"C[N][N])"
{"
""""int"i"="blockIdx.x"*"blockDim.x"+"threadIdx.xH"
""""int"j"="blockIdx.y"*"blockDim.y"+"threadIdx.yH"
""""if"(i"<"N"&&"j"<"N)"
""""""""C[i][j]"="A[i][j]"+"B[i][j]H"
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2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the 
CUDA threads execute on a physically separate device that operates as a coprocessor 
to the host running the C program. This is the case, for example, when the kernels 
execute on a GPU and the rest of the C program executes on a CPU. 
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threads are called a warp
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Limits and Threads

• Nvidia uses threads and blocks in a grid to help 
programmers map their problem to the GPU

• The number of threads per block is limited by the 
hardware

• Nowadays, GPUs may support 512 threads per block

• Kernels can be executed simultaneously in several blocks

• Blocks can be arranged in arrays or grids, as developers 
see suitable for their case
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Blocks and Warps: Scheduling

• Blocks are identified by a variable called blockIdx

• Each block can run a limited number of threads

• A warp is a group of 32 threads: this helps the hardware 
scheduler to execute a huge number of threads

• Developers have no influence on the scheduler except for 
synchronization between threads

• Each grid can be 1D, 2D, or 3D although this is just 
convenient from the programmer’s point of view
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• Bioinformatics and Healthcare

• Finance and Economy

• Audio-video Processors

• Computer Vision and Imaging

• AI (e.g., DeepMind

• Cryptography and Security

• (and the list goes on…)
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Speedup

• Actually not everything is suitable for the GPUs, but where it 
can be applied, it’s fast

• Rendering (raytracing): 60×

• AI (classification of neurons in Electron Microscopy): 60×

• Lattice-Boltzmann (cardiac flow): 500×

• Basically, when linear algebra is involved, it’s fast

• Just to know, almost everything is modeled with linear algebra


