
GPU Programming

Introduction and Historical Notes

Franco Milicchio

https://fmilicchio.bitbucket.io

A Perspective

A Perspective

• Parallel computing is ubiquitous, but it is not new at all

A Perspective

• Parallel computing is ubiquitous, but it is not new at all

• Astonishingly, the Analytical Engine by Charles Babbage in
~1837 was a parallel computer

A Perspective

• Parallel computing is ubiquitous, but it is not new at all

• Astonishingly, the Analytical Engine by Charles Babbage in
~1837 was a parallel computer

• In 1958 parallel computing was introduced by S. Gill
introducing branching and waiting, while at IBM J. Cocke
and D. Slotnick discussed parallelism in numerical
calculations

A Perspective

• Parallel computing is ubiquitous, but it is not new at all

• Astonishingly, the Analytical Engine by Charles Babbage in
~1837 was a parallel computer

• In 1958 parallel computing was introduced by S. Gill
introducing branching and waiting, while at IBM J. Cocke
and D. Slotnick discussed parallelism in numerical
calculations

• The D825 by Burroughs Corporation, introduced n 1962,
was the first modern parallel computer with four-processors

History of GPUs

History of GPUs

• In the 1970s computers were bulky and graphics was
completely neglected

History of GPUs

• In the 1970s computers were bulky and graphics was
completely neglected

• One sector, however, was interested in graphics: games

History of GPUs

• In the 1970s computers were bulky and graphics was
completely neglected

• One sector, however, was interested in graphics: games

• The industry was driven by arcade games, e.g., Namco,
Taito, and many others

History of GPUs

• In the 1970s computers were bulky and graphics was
completely neglected

• One sector, however, was interested in graphics: games

• The industry was driven by arcade games, e.g., Namco,
Taito, and many others

• The 1980s brought a great innovation with the Amiga PC

History of GPUs

• In the 1970s computers were bulky and graphics was
completely neglected

• One sector, however, was interested in graphics: games

• The industry was driven by arcade games, e.g., Namco,
Taito, and many others

• The 1980s brought a great innovation with the Amiga PC

• Things changed greatly in the 1990s

S3 Virge My first graphics card (1991)

The World is 3D

The World is 3D

• The 1990s saw a plethora of graphics cards with different
performances (S3, ATI, Matrox, Nvidia, …)

The World is 3D

• The 1990s saw a plethora of graphics cards with different
performances (S3, ATI, Matrox, Nvidia, …)

• They were fixed functions, hence you had to write games
specifically for each of them

The World is 3D

• The 1990s saw a plethora of graphics cards with different
performances (S3, ATI, Matrox, Nvidia, …)

• They were fixed functions, hence you had to write games
specifically for each of them

• Then, progressively, fixed functions were replaced by
programmable functions

The World is 3D

• The 1990s saw a plethora of graphics cards with different
performances (S3, ATI, Matrox, Nvidia, …)

• They were fixed functions, hence you had to write games
specifically for each of them

• Then, progressively, fixed functions were replaced by
programmable functions

• Now we know them by the term “GPUs” (thanks to
Nvidia’s marketing team)

How Speed Changed

• Over the last decades, CPUs relied on clock speed to
increase performances

How Speed Changed

• Over the last decades, CPUs relied on clock speed to
increase performances

• There is a recent flat rate of growth among all CPU
vendors

How Speed Changed

• Over the last decades, CPUs relied on clock speed to
increase performances

• There is a recent flat rate of growth among all CPU
vendors

• As it’s now known in industry: the free lunch is over

How Speed Changed

• Over the last decades, CPUs relied on clock speed to
increase performances

• There is a recent flat rate of growth among all CPU
vendors

• As it’s now known in industry: the free lunch is over

• An increasing GPU market propelled investments in
research in many areas

How Speed Changed

• Over the last decades, CPUs relied on clock speed to
increase performances

• There is a recent flat rate of growth among all CPU
vendors

• As it’s now known in industry: the free lunch is over

• An increasing GPU market propelled investments in
research in many areas

• The trend is obviously rising for GPUs, flat for CPUs

How Speed Changed

CPU Clock Rate

0.1

1

10

100

1000

10000

1971 1974 1976 1979 1982 1986 1989 1995 1998 1999 2000 2005 2009

0.74
2

4
10 16

30
66

200
600 1000

2000 3000 3700

Clock Rate (MHz)

CPU Clock Rate

0.1

1

10

100

1000

10000

1971 1974 1976 1979 1982 1986 1989 1995 1998 1999 2000 2005 2009

0.74
2

4
10 16

30
66

200
600 1000

2000 3000 3700

Clock Rate (MHz)

Nothing
New here

CPU Clock Rate

0.1

1

10

100

1000

10000

1971 1974 1976 1979 1982 1986 1989 1995 1998 1999 2000 2005 2009

0.74
2

4
10 16

30
66

200
600 1000

2000 3000 3700

Clock Rate (MHz)

Nothing
New here

TeraHertz?

Cost of Performances

0.01

1

100

10000

1000000

100000000

10000000000

1961 1984 1997 2000 2003 2007 2011 2013 2017

$145,000,000,000.00

$42,000,000.00

$42,000.00
$1,300.00

$100.00 $52.00
$1.80

$0.16 $0.06

GFLOP Cost (USD)

GFLOPs

0

3000

6000

9000

12000

1/2003 4/2004 3/2006 5/2007 1/2009 5/2013 9/2015 4/2017

GPU CPU

Who uses GPUs?

TL;DR: 
everyone, even if you don’t know

Speedup

• How fast we can go is highly dependent on how we
implement an algorithm

Speedup

• How fast we can go is highly dependent on how we
implement an algorithm

• Physical architectures for high performances matter a lot
and without that knowledge you won’t be fast

Speedup

• How fast we can go is highly dependent on how we
implement an algorithm

• Physical architectures for high performances matter a lot
and without that knowledge you won’t be fast

• Let’s see now how a GPU works

Speedup

• How fast we can go is highly dependent on how we
implement an algorithm

• Physical architectures for high performances matter a lot
and without that knowledge you won’t be fast

• Let’s see now how a GPU works

• After, we will see how we can use GPU to achieve way
more of just graphics

Speedup

Vertices, Cells, Textures This mesh will be rendered into pixels

GPU Architecture

474

First, commands, textures, and vertex data are received from the host CPU through
shared buffers in system memory or local frame-buffer memory. A command stream is
written by the CPU, which initializes and modifies state, sends rendering commands, and
references the texture and vertex data. Commands are parsed, and a vertex fetch unit is
used to read the vertices referenced by the rendering commands. The commands, vertices,
and state changes flow downstream, where they are used by subsequent pipeline stages.

The vertex processors (sometimes called “vertex shaders”), shown in Figure 30-4, allow
for a program to be applied to each vertex in the object, performing transformations,
skinning, and any other per-vertex operation the user specifies. For the first time, a

Chapter 30 The GeForce 6 Series GPU Architecture

Figure 30-3. A Block Diagram of the GeForce 6 Series Architecture

430_gems2_ch30_new.qxp 1/31/2005 6:56 PM Page 474

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

478

independent memory partitions give the GPU a wide (256 bits), flexible memory sub-
system, allowing for streaming of relatively small (32-byte) memory accesses at near the
35 GB/sec physical limit.

30.2.2 Functional Block Diagram for Non-Graphics Operations
As graphics hardware becomes more and more programmable, applications unrelated to
the standard polygon pipeline (as described in the preceding section) are starting to
present themselves as candidates for execution on GPUs.

Figure 30-6 shows a simplified view of the GeForce 6 Series architecture, when used as a
graphics pipeline. It contains a programmable vertex engine, a programmable fragment
engine, a texture load/filter engine, and a depth-compare/blending data write engine.

In this alternative view, a GPU can be seen as a large amount of programmable floating-
point horsepower and memory bandwidth that can be exploited for compute-intensive
applications completely unrelated to computer graphics.

Figure 30-7 shows another way to view the GeForce 6 Series architecture. When used for
non-graphics applications, it can be viewed as two programmable blocks that run serially:
the vertex processor and the fragment processor, both with support for fp32 operands and
intermediate values. Both use the texture unit as a random-access data fetch unit and access
data at a phenomenal 35 GB/sec (550 MHz DDR memory clock � 256 bits per clock
cycle � 2 transfers per clock cycle). In addition, both the vertex and the fragment processor
are highly computationally capable. (Performance details follow in Section 30.4.)

Chapter 30 The GeForce 6 Series GPU Architecture

Figure 30-6. The GeForce 6 Series Architecture Viewed as a Graphics Pipeline

430_gems2_ch30_new.qxp 1/31/2005 6:57 PM Page 478

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

Graphics Pipeline

478

independent memory partitions give the GPU a wide (256 bits), flexible memory sub-
system, allowing for streaming of relatively small (32-byte) memory accesses at near the
35 GB/sec physical limit.

30.2.2 Functional Block Diagram for Non-Graphics Operations
As graphics hardware becomes more and more programmable, applications unrelated to
the standard polygon pipeline (as described in the preceding section) are starting to
present themselves as candidates for execution on GPUs.

Figure 30-6 shows a simplified view of the GeForce 6 Series architecture, when used as a
graphics pipeline. It contains a programmable vertex engine, a programmable fragment
engine, a texture load/filter engine, and a depth-compare/blending data write engine.

In this alternative view, a GPU can be seen as a large amount of programmable floating-
point horsepower and memory bandwidth that can be exploited for compute-intensive
applications completely unrelated to computer graphics.

Figure 30-7 shows another way to view the GeForce 6 Series architecture. When used for
non-graphics applications, it can be viewed as two programmable blocks that run serially:
the vertex processor and the fragment processor, both with support for fp32 operands and
intermediate values. Both use the texture unit as a random-access data fetch unit and access
data at a phenomenal 35 GB/sec (550 MHz DDR memory clock � 256 bits per clock
cycle � 2 transfers per clock cycle). In addition, both the vertex and the fragment processor
are highly computationally capable. (Performance details follow in Section 30.4.)

Chapter 30 The GeForce 6 Series GPU Architecture

Figure 30-6. The GeForce 6 Series Architecture Viewed as a Graphics Pipeline

430_gems2_ch30_new.qxp 1/31/2005 6:57 PM Page 478

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

Graphics Pipeline

The vertex processor operates on data, passing it directly to the fragment processor, or
by using the rasterizer to expand the data into interpolated values. At this point, each
triangle (or point) from the vertex processor has become one or more fragments.

Before a fragment reaches the fragment processor, the z-cull unit compares the pixel’s
depth with the values that already exist in the depth buffer. If the pixel’s depth is
greater, the pixel will not be visible, and there is no point shading that fragment, so the
fragment processor isn’t even executed. (This optimization happens only if it’s clear that
the fragment processor isn’t going to modify the fragment’s depth.) Thinking in a
general-purpose sense, this early culling feature makes it possible to quickly decide to
skip work on specific fragments based on a scalar test. Chapter 34 of this book, “GPU
Flow-Control Idioms,” explains how to take advantage of this feature to efficiently
predicate work for general-purpose computations.

After the fragment processor runs on a potential pixel (still a “fragment” because it has
not yet reached the frame buffer), the fragment must pass a number of tests in order to
move farther down the pipeline. (There may also be more than one fragment that
comes out of the fragment processor if multiple render targets [MRTs] are being used.
Up to four MRTs can be used to write out large amounts of data—up to 16 scalar
floating-point values at a time, for example—plus depth.)

First, the scissor test rejects the fragment if it lies outside a specified subrectangle of the
frame buffer. Although the popular graphics APIs define scissoring at this location in the
pipeline, it is more efficient to perform the scissor test in the rasterizer. Scissoring in x and
y actually happens in the rasterizer, before fragment processing, and z scissoring happens

30.2 Overall System Architecture 479

Figure 30-7. The GeForce 6 Series Architecture for Non-Graphics Applications

430_gems2_ch30_new.qxp 1/31/2005 6:57 PM Page 479

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

CPU Architecture (Intel i7)

CPU Architecture (Intel i7)

Cores

CPU Architecture (Intel i7)

Cores

Memory
Controller

CPU Architecture (Intel i7)

Cores

Memory
Controller

I/O, Queue

CPU Architecture (Intel i7)

Cores

Memory
Controller

I/O, Queue

Caches

CPU Architecture (Intel i7)

Cores

Memory
Controller

I/O, Queue

Caches

“Multicore”
architecture

What if we got rid of everything?

CPU Architecture

CPU Architecture

Chip

CPU Architecture

Chip

Cache

CPU Architecture

Chip

Cache

ALU

CPU Architecture

Chip

Cache

ALU FPU

CPU Architecture

Chip

Cache

ALU FPU

Memory Ctrl

CPU Architecture

Chip

Cache

ALU FPU

Memory Ctrl Load/Store

CPU Architecture

Chip

Cache

ALU FPU

Memory Ctrl Load/Store

Prefetch

CPU Architecture

Chip

Cache

ALU FPU

Memory Ctrl Load/Store

PrefetchContext

CPU Architecture

Chip

Cache

ALU FPU

Memory Ctrl Load/Store

PrefetchContext

I/O

CPU Architecture

Chip

Cache

ALU FPU

Memory Ctrl Load/Store

PrefetchContext

I/O

Bu
s

CPU Architecture

ChipALU FPU

CPU Architecture

ChipALU FPU

Fill this with
ALUs and FPUs

GPU Architecture

• Compared to CPUs, GPUs removed all components that
sped up the execution of single instructions

GPU Architecture

• Compared to CPUs, GPUs removed all components that
sped up the execution of single instructions

• No prefetching, out of order execution, branch prediction
and so on, nothing of that: just a minimal context

GPU Architecture

• Compared to CPUs, GPUs removed all components that
sped up the execution of single instructions

• No prefetching, out of order execution, branch prediction
and so on, nothing of that: just a minimal context

• All of the remaining chip area can be now filled with ALUs
and can therefore run multiple threads

GPU Architecture

• Compared to CPUs, GPUs removed all components that
sped up the execution of single instructions

• No prefetching, out of order execution, branch prediction
and so on, nothing of that: just a minimal context

• All of the remaining chip area can be now filled with ALUs
and can therefore run multiple threads

• Since GPUs actually share control among cores, one
single instruction is executed by several threads at once
by adding execution units instead of control ones

GPU Architecture

SIMD Architecture
 Chapter(1.(Introduction!

!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

SIMD Architecture
 Chapter(1.(Introduction!

!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Many
Independent

Execution Units

SIMD Architecture
 Chapter(1.(Introduction!

!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Many
Independent

Execution Units

Many
Shared
Controls

SIMD Architecture
 Chapter(1.(Introduction!

!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Many
Independent

Execution Units

Many
Shared
Controls

Some Shared
Memory

SIMD Architecture
 Chapter(1.(Introduction!

!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Many
Independent

Execution Units

Many
Shared
Controls

One Huge 
Shared
Memory

Some Shared
Memory

SIMD Architecture
 Chapter(1.(Introduction!

!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Many
Independent

Execution Units

“Manycore”
architecture

Many
Shared
Controls

One Huge 
Shared
Memory

Some Shared
Memory

Try It Yourself

Use Amazon EC2 or similar for free

Historical Notes

• When shaders were available, people from academia
started using GPUs for something different from graphics

Historical Notes

• When shaders were available, people from academia
started using GPUs for something different from graphics

• Matrix multiplication was easy and developed in 2001,
while LU decomposition was written in 2005

Historical Notes

• When shaders were available, people from academia
started using GPUs for something different from graphics

• Matrix multiplication was easy and developed in 2001,
while LU decomposition was written in 2005

• Back then one had to use OpenGL and DirectX

Historical Notes

• When shaders were available, people from academia
started using GPUs for something different from graphics

• Matrix multiplication was easy and developed in 2001,
while LU decomposition was written in 2005

• Back then one had to use OpenGL and DirectX

• Some programming languages emerged, like Brook or
Sh, but NVidia changed the development perspective

Historical Notes

• When shaders were available, people from academia
started using GPUs for something different from graphics

• Matrix multiplication was easy and developed in 2001,
while LU decomposition was written in 2005

• Back then one had to use OpenGL and DirectX

• Some programming languages emerged, like Brook or
Sh, but NVidia changed the development perspective

• In 2007 they released CUDA

Historical Notes

CUDA

CUDA

• CUDA is acronym for “Compute Unified Device
Architecture”

CUDA

• CUDA is acronym for “Compute Unified Device
Architecture”

• It is a general purpose parallel computing architecture

CUDA

• CUDA is acronym for “Compute Unified Device
Architecture”

• It is a general purpose parallel computing architecture

• It comprises hardware, compilers (C, C++, and
FORTRAN), and several libraries

CUDA

• CUDA is acronym for “Compute Unified Device
Architecture”

• It is a general purpose parallel computing architecture

• It comprises hardware, compilers (C, C++, and
FORTRAN), and several libraries

• It may use several GPUs, if present on the device

CUDA

• CUDA is acronym for “Compute Unified Device
Architecture”

• It is a general purpose parallel computing architecture

• It comprises hardware, compilers (C, C++, and
FORTRAN), and several libraries

• It may use several GPUs, if present on the device

• Obviously, it runs only on NVidia’s hardware (but compiles
on every computer)

Main Characteristics

Main Characteristics

• Nvidia suggests to use its extension to common ISO C

Main Characteristics

• Nvidia suggests to use its extension to common ISO C

• Threads are a native concept

Main Characteristics

• Nvidia suggests to use its extension to common ISO C

• Threads are a native concept

• CUDA is a shared memory architecture, and it supports
barriers and synchronization calls

Main Characteristics

• Nvidia suggests to use its extension to common ISO C

• Threads are a native concept

• CUDA is a shared memory architecture, and it supports
barriers and synchronization calls

• A CUDA program is GPU “independent” (sort of)

Main Characteristics

• Nvidia suggests to use its extension to common ISO C

• Threads are a native concept

• CUDA is a shared memory architecture, and it supports
barriers and synchronization calls

• A CUDA program is GPU “independent” (sort of)

• It runs the same program on different GPUs

Vector Sum

Vector Sum

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

int main(void)
{
 // ...
 // Kernel invocation with N threads
 VecAdd<<<1, N>>>(A, B, C);
 // ...
}

Vector Sum

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

int main(void)
{
 // ...
 // Kernel invocation with N threads
 VecAdd<<<1, N>>>(A, B, C);
 // ...
}

Vector Sum

Vector Sum

A

Vector Sum

A

B

Vector Sum

A

B

C

Vector Sum

A

B

C

i = threadIdx.x

Vector Sum

A

B

C

i = threadIdx.x

C[i] = A[i] + B[i]

Vector Sum

A

B

C

i = threadIdx.x

C[i] = A[i] + B[i]

Vector Sum

A

B

C

i = threadIdx.x

C[i] = A[i] + B[i]

VecAdd<<<1, N>>>(A, B, C);

Vector Sum

A

B

C

i = threadIdx.x

C[i] = A[i] + B[i]

VecAdd<<<1, N>>>(A, B, C);

1-D block of threads

What about branches? Single control, multiple threads

Branching without Control

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Branching without Control

 // ...

 if (i > 3.1415)
 {
 // ...

 }
 else
 {
 // ...

 }

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1

Branches
produce stalls

Cache Effects

Cache Effects

• As we removed the control unit and shared among
several execution ones, we’re not able to branch

Cache Effects

• As we removed the control unit and shared among
several execution ones, we’re not able to branch

• Moreover, we also remove the memory cache

Cache Effects

• As we removed the control unit and shared among
several execution ones, we’re not able to branch

• Moreover, we also remove the memory cache

• This means that accessing memory is hugely expensive

Cache Effects

• As we removed the control unit and shared among
several execution ones, we’re not able to branch

• Moreover, we also remove the memory cache

• This means that accessing memory is hugely expensive

• However, we built lots and lots of threads

Cache Effects

• As we removed the control unit and shared among
several execution ones, we’re not able to branch

• Moreover, we also remove the memory cache

• This means that accessing memory is hugely expensive

• However, we built lots and lots of threads

• So, all these problems are ameliorated by the numbers

No Caching World

No Caching World

Time

No Caching World

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

thredIdx 0...15

No Caching World

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

thredIdx 0...15

No Caching World

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Memory Access

thredIdx 0...15

No Caching World

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Memory Access

thredIdx 0...15 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

thredIdx 16...31

No Caching World

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Memory Access

thredIdx 0...15 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

thredIdx 16...31

No Caching World

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Memory Access

thredIdx 0...15 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

thredIdx 16...31

Memory Access

No Caching World

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Memory Access

thredIdx 0...15 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

thredIdx 16...31

Memory Access

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

thredIdx 0...15

No Caching World

Time

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

Memory Access

thredIdx 0...15 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

thredIdx 16...31

Memory Access

 Chapter(1.(Introduction!
!

CUDA(Programming(Guide(Version(3.0! ! 3
!

Figure(1>2.(The(GPU(Devotes(More(Transistors(to(Data(
Processing(

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations � the same program is executed on many
data elements in parallel � with high arithmetic intensity � the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA�:(a(General>Purpose(Parallel(
Computing(Architecture(
In November 2006, NVIDIA introduced CUDA���a general purpose parallel
computing architecture � with a new parallel programming model and instruction
set architecture � that leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more efficient way than on a
CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 1-3, other languages or
application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

Cache!

ALU!Control!

ALU!

ALU!

ALU!

DRAM!

CPU!

DRAM!

GPU!

thredIdx 0...15

Thread Blocks
 Chapter(2:(Programming(Model!

!

CUDA(Programming(Guide(Version(3.0! ! 9
!

(

Figure(2@1.(Grid(of(Thread(Blocks(

The number of threads per block and the number of blocks per grid specified in the
<<<�>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can
be specified as in the example above.

Each block within the grid can be identified by a one-dimensional or two-
dimensional index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through
the built-in blockDim variable.

Extending the previous MatAdd() example to handle multiple blocks, the code
becomes as follows.
//"Kernel"definition"
__global__"void"MatAdd(float"A[N][N],"float"B[N][N],"
"""""""""""""""""""""""float"C[N][N])"
{"
""""int"i"="blockIdx.x"*"blockDim.x"+"threadIdx.xH"
""""int"j"="blockIdx.y"*"blockDim.y"+"threadIdx.yH"
""""if"(i"<"N"&&"j"<"N)"
""""""""C[i][j]"="A[i][j]"+"B[i][j]H"

Grid!

Block!(1,!1)!

Thread!(0,!0)! Thread!(1,!0)! Thread!(2,!0)! Thread!(3,!0)!

Thread!(0,!1)! Thread!(1,!1)! Thread!(2,!1)! Thread!(3,!1)!

Thread!(0,!2)! Thread!(1,!2)! Thread!(2,!2)! Thread!(3,!2)!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Memory Model

Memory Model

 Chapter(2:(Programming(Model!
!

CUDA(Programming(Guide(Version(3.0! ! 11
!

(

Figure(2@2.(Memory(Hierarchy(

2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a coprocessor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Global!memory!

Grid!0!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Grid!1!

Block!(1,!1)!

Block!(1,!0)!

Block!(1,!2)!

Block!(0,!1)!

Block!(0,!0)!

Block!(0,!2)!

Thread!Block! !
Per9block!shared!

memory!

Thread!

Per9thread!local!
memory!

Memory Model

 Chapter(2:(Programming(Model!
!

CUDA(Programming(Guide(Version(3.0! ! 11
!

(

Figure(2@2.(Memory(Hierarchy(

2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a coprocessor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Global!memory!

Grid!0!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Grid!1!

Block!(1,!1)!

Block!(1,!0)!

Block!(1,!2)!

Block!(0,!1)!

Block!(0,!0)!

Block!(0,!2)!

Thread!Block! !
Per9block!shared!

memory!

Thread!

Per9thread!local!
memory!

 Chapter(2:(Programming(Model!
!

CUDA(Programming(Guide(Version(3.0! ! 11
!

(

Figure(2@2.(Memory(Hierarchy(

2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a coprocessor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Global!memory!

Grid!0!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Grid!1!

Block!(1,!1)!

Block!(1,!0)!

Block!(1,!2)!

Block!(0,!1)!

Block!(0,!0)!

Block!(0,!2)!

Thread!Block! !
Per9block!shared!

memory!

Thread!

Per9thread!local!
memory!

Memory Model

 Chapter(2:(Programming(Model!
!

CUDA(Programming(Guide(Version(3.0! ! 11
!

(

Figure(2@2.(Memory(Hierarchy(

2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a coprocessor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Global!memory!

Grid!0!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Grid!1!

Block!(1,!1)!

Block!(1,!0)!

Block!(1,!2)!

Block!(0,!1)!

Block!(0,!0)!

Block!(0,!2)!

Thread!Block! !
Per9block!shared!

memory!

Thread!

Per9thread!local!
memory!

 Chapter(2:(Programming(Model!
!

CUDA(Programming(Guide(Version(3.0! ! 11
!

(

Figure(2@2.(Memory(Hierarchy(

2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a coprocessor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Global!memory!

Grid!0!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Grid!1!

Block!(1,!1)!

Block!(1,!0)!

Block!(1,!2)!

Block!(0,!1)!

Block!(0,!0)!

Block!(0,!2)!

Thread!Block! !
Per9block!shared!

memory!

Thread!

Per9thread!local!
memory!

 Chapter(2:(Programming(Model!
!

CUDA(Programming(Guide(Version(3.0! ! 11
!

(

Figure(2@2.(Memory(Hierarchy(

2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a coprocessor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Global!memory!

Grid!0!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Grid!1!

Block!(1,!1)!

Block!(1,!0)!

Block!(1,!2)!

Block!(0,!1)!

Block!(0,!0)!

Block!(0,!2)!

Thread!Block! !
Per9block!shared!

memory!

Thread!

Per9thread!local!
memory!

Memory Model

 Chapter(2:(Programming(Model!
!

CUDA(Programming(Guide(Version(3.0! ! 11
!

(

Figure(2@2.(Memory(Hierarchy(

2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a coprocessor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Global!memory!

Grid!0!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Grid!1!

Block!(1,!1)!

Block!(1,!0)!

Block!(1,!2)!

Block!(0,!1)!

Block!(0,!0)!

Block!(0,!2)!

Thread!Block! !
Per9block!shared!

memory!

Thread!

Per9thread!local!
memory!

 Chapter(2:(Programming(Model!
!

CUDA(Programming(Guide(Version(3.0! ! 11
!

(

Figure(2@2.(Memory(Hierarchy(

2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a coprocessor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Global!memory!

Grid!0!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Grid!1!

Block!(1,!1)!

Block!(1,!0)!

Block!(1,!2)!

Block!(0,!1)!

Block!(0,!0)!

Block!(0,!2)!

Thread!Block! !
Per9block!shared!

memory!

Thread!

Per9thread!local!
memory!

 Chapter(2:(Programming(Model!
!

CUDA(Programming(Guide(Version(3.0! ! 11
!

(

Figure(2@2.(Memory(Hierarchy(

2.4 Heterogeneous(Programming(
As illustrated by Figure 2-3, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a coprocessor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Global!memory!

Grid!0!

Block!(2,!1)!Block!(1,!1)!Block!(0,!1)!

Block!(2,!0)!Block!(1,!0)!Block!(0,!0)!

Grid!1!

Block!(1,!1)!

Block!(1,!0)!

Block!(1,!2)!

Block!(0,!1)!

Block!(0,!0)!

Block!(0,!2)!

Thread!Block! !
Per9block!shared!

memory!

Thread!

Per9thread!local!
memory!

In Nvidia’s jargon, 32
threads are called a warp

Limits and Threads

Limits and Threads

• Nvidia uses threads and blocks in a grid to help
programmers map their problem to the GPU

Limits and Threads

• Nvidia uses threads and blocks in a grid to help
programmers map their problem to the GPU

• The number of threads per block is limited by the
hardware

Limits and Threads

• Nvidia uses threads and blocks in a grid to help
programmers map their problem to the GPU

• The number of threads per block is limited by the
hardware

• Nowadays, GPUs may support 512 threads per block

Limits and Threads

• Nvidia uses threads and blocks in a grid to help
programmers map their problem to the GPU

• The number of threads per block is limited by the
hardware

• Nowadays, GPUs may support 512 threads per block

• Kernels can be executed simultaneously in several blocks

Limits and Threads

• Nvidia uses threads and blocks in a grid to help
programmers map their problem to the GPU

• The number of threads per block is limited by the
hardware

• Nowadays, GPUs may support 512 threads per block

• Kernels can be executed simultaneously in several blocks

• Blocks can be arranged in arrays or grids, as developers
see suitable for their case

Blocks and Warps: Scheduling

Blocks and Warps: Scheduling

• Blocks are identified by a variable called blockIdx

Blocks and Warps: Scheduling

• Blocks are identified by a variable called blockIdx

• Each block can run a limited number of threads

Blocks and Warps: Scheduling

• Blocks are identified by a variable called blockIdx

• Each block can run a limited number of threads

• A warp is a group of 32 threads: this helps the hardware
scheduler to execute a huge number of threads

Blocks and Warps: Scheduling

• Blocks are identified by a variable called blockIdx

• Each block can run a limited number of threads

• A warp is a group of 32 threads: this helps the hardware
scheduler to execute a huge number of threads

• Developers have no influence on the scheduler except for
synchronization between threads

Blocks and Warps: Scheduling

• Blocks are identified by a variable called blockIdx

• Each block can run a limited number of threads

• A warp is a group of 32 threads: this helps the hardware
scheduler to execute a huge number of threads

• Developers have no influence on the scheduler except for
synchronization between threads

• Each grid can be 1D, 2D, or 3D although this is just
convenient from the programmer’s point of view

Jobs with CUDA

Jobs with CUDA

• Physics and Graphics

Jobs with CUDA

• Physics and Graphics

• Scientific Communities

Jobs with CUDA

• Physics and Graphics

• Scientific Communities

• Bioinformatics and Healthcare

Jobs with CUDA

• Physics and Graphics

• Scientific Communities

• Bioinformatics and Healthcare

• Finance and Economy

Jobs with CUDA

• Physics and Graphics

• Scientific Communities

• Bioinformatics and Healthcare

• Finance and Economy

• Audio-video Processors

Jobs with CUDA

• Physics and Graphics

• Scientific Communities

• Bioinformatics and Healthcare

• Finance and Economy

• Audio-video Processors

• Computer Vision and Imaging

Jobs with CUDA

• Physics and Graphics

• Scientific Communities

• Bioinformatics and Healthcare

• Finance and Economy

• Audio-video Processors

• Computer Vision and Imaging

• AI (e.g., DeepMind

Jobs with CUDA

• Physics and Graphics

• Scientific Communities

• Bioinformatics and Healthcare

• Finance and Economy

• Audio-video Processors

• Computer Vision and Imaging

• AI (e.g., DeepMind

• Cryptography and Security

Jobs with CUDA

• Physics and Graphics

• Scientific Communities

• Bioinformatics and Healthcare

• Finance and Economy

• Audio-video Processors

• Computer Vision and Imaging

• AI (e.g., DeepMind

• Cryptography and Security

• (and the list goes on…)

Speedup

Speedup

• Actually not everything is suitable for the GPUs, but where it
can be applied, it’s fast

Speedup

• Actually not everything is suitable for the GPUs, but where it
can be applied, it’s fast

• Rendering (raytracing): 60×

Speedup

• Actually not everything is suitable for the GPUs, but where it
can be applied, it’s fast

• Rendering (raytracing): 60×

• AI (classification of neurons in Electron Microscopy): 60×

Speedup

• Actually not everything is suitable for the GPUs, but where it
can be applied, it’s fast

• Rendering (raytracing): 60×

• AI (classification of neurons in Electron Microscopy): 60×

• Lattice-Boltzmann (cardiac flow): 500×

Speedup

• Actually not everything is suitable for the GPUs, but where it
can be applied, it’s fast

• Rendering (raytracing): 60×

• AI (classification of neurons in Electron Microscopy): 60×

• Lattice-Boltzmann (cardiac flow): 500×

• Basically, when linear algebra is involved, it’s fast

Speedup

• Actually not everything is suitable for the GPUs, but where it
can be applied, it’s fast

• Rendering (raytracing): 60×

• AI (classification of neurons in Electron Microscopy): 60×

• Lattice-Boltzmann (cardiac flow): 500×

• Basically, when linear algebra is involved, it’s fast

• Just to know, almost everything is modeled with linear algebra

