
GPU Programming

More details and related technologies

Franco Milicchio

https://fmilicchio.bitbucket.io

GPU Availability

• GPUs are readily available on many platforms

• PCs (obviously) and servers can be used, but also mobile
architectures have GPUs

• Apple’s iOS has the Metal Compute framework, Android
could have an OpenCL driver

• Intel itself did not stand by and released in 2012 the Intel
Xeon Phi accelerator, after the failure of the Larrabee
processor

NVidia Volta Released in December 2017

Limits of GPUs

• As we’ve seen, we can have a 7× to 60×, or even 500×
speedup compared to CPUs

• We have a lot of cores that must be fed with data

• However, the bandwidth is limited

• For instance, with an element-wise vector product, to
feed the GPU we would need a 1 TB/s bandwidth

• We’re not there yet (but we will be) and no latency or
scheduling can hide this problem

Vector Sum

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

int main(void)
{
 // ...
 // Kernel invocation with N threads
 VecAdd<<<1, N>>>(A, B, C);
 // ...
}

Nope!

Rule of thumb: do more math per data

Amdhal’s Law

Memory Model

Memory Management

• CUDA is an explicit tool for manycore programming

• Know that there exists no such thing as a free lunch

• Speed comes at a cost: you must manage thread
invocation as we’ve seen

• Additionally, you must manage memory in the C way

• Allocating and deallocating memory is expensive,
copying to and from the host is expensive: be careful

Memory Allocation

// Host code
int main(void)
{
 int N = /* ... */;
 size_t size = N * sizeof(float);

 float* h_A = (float*) malloc(size);
 float* h_B = (float*) malloc(size);

 // Initialize h_A and h_B on the CPU

 float* d_A;
 cudaMalloc((void**)&d_A, size);

 // Copy vectors from host memory to device memory
 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

 // ...

This was on
Windows

Memory Model

• Let’s recall that with CUDA we have a shared big memory
on the GPU

• Then we allocate a chunk of memory where threads will
find the input and output data

• Each parallel invocation of a kernel on the GPU is referred
to as a block

• We have a grid of blocks then, i.e., the set of all blocks

• Each block will have threads, actually scheduled in warps

Grids and Blocks

Grid

Block 0 Block 1 Block n

…↝ ↝ ↝
↝ ↝ ↝
↝ ↝ ↝

↝ ↝ ↝
↝ ↝ ↝
↝ ↝ ↝

↝ ↝ ↝
↝ ↝ ↝
↝ ↝ ↝

Threads: we
never actually

see warps

Kernel
invocation

Grids and Blocks

addVector<<<N, 1>>>(x, y, z); addVector<<<1, N>>>(x, y, z);

One invocation
with multiple threads

Multiple invocations
with one thread

Beware: the number of threads that a block can handle
is hardware-limited, a good limit is 1024 threads per block

Kernel Invocations

• The two parameters passed with the triple angular
parentheses are, as said, necessary

• In reality, there are four, but we won’t see all of them here

• The first is the the number of blocks

• The second is the number of threads inside the block

• We have seen numbers, but actually they are not
numbers

Memory Mapping

Memory Maps

• Each parameter is of type dim3, and can have up to three
dimensions (obviously)

• What dimension is needed depends on your problem

• This influences how you program, not actually how the GPU
accesses memory (which is, in fact, a linear space)

• A block has index blockIdx (with x, y, and z), and
threadIdx thread index (again with x, y, and z)

• Remember that a thread index refers to the index inside the
block and not a global one

Threads

Cooperation

• Let’s consider a simple example in order to answer the
following question

• Why would we want threads when we already have blocks?

• In this example, we will use a one-dimensional stencil

• We have a vector, and we want as output a vector of the
same size

• The i-th element shall contain the sum of the elements at
distance 3 from i

Stencil

in

out

Sum

How many memory reads are there?

Optimizing Memory Transfers

• Each thread will process one output item, but each item
in the input vector is read seven times

• This is extremely slow, and we should use a shared
memory approach to minimize memory reads

• In fact, threads in a block can access a very fast shared
(private) memory, visible only inside the block

• Then we could just read blockDim.x items to the shared
memory, compute, and write back blockDim.x items

Shared Memory

in

out

Sum

Block

Let’s see the code

Stencil Kernel

__global__ void stencil_1d(int *in, int *out)
{
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 
 int gi = threadIdx.x + blockIdx.x * blockDim.x;
 int li = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[li] = in[gi];

 if (threadIdx.x < RADIUS)
 {
 temp[li - RADIUS] = in[gi - RADIUS];
 temp[li + BLOCK_SIZE] = in[gi + BLOCK_SIZE];
 }

//...

Stencil Kernel

//...

 // Apply the stencil
 int result = 0;
 
 for (int o = -RADIUS ; o <= RADIUS ; o++)
 result += temp[li + o];

 // Store the result
 out[gi] = result;
}

This has a nasty error

Stencil Kernel

__global__ void stencil_1d(int *in, int *out)
{
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 
 int gi = threadIdx.x + blockIdx.x * blockDim.x;
 int li = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[li] = in[gi];

 if (threadIdx.x < RADIUS)
 {
 temp[li - RADIUS] = in[gi - RADIUS];
 temp[li + BLOCK_SIZE] = in[gi + BLOCK_SIZE];
 }

Immagine thread 15 reads the last items while
thread 0 hasn’t fetched them: what would happen?

Data Races

__global__ void stencil_1d(int *in, int *out)
{
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 
 int gi = threadIdx.x + blockIdx.x * blockDim.x;
 int li = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[li] = in[gi];

 if (threadIdx.x < RADIUS)
 {
 temp[li - RADIUS] = in[gi - RADIUS];
 temp[li + BLOCK_SIZE] = in[gi + BLOCK_SIZE];
 }

// Barrier
__synchthreads();

Matrix Multiplication

Matrix Multiplication

• Matrix multiplication is the basis of many applications

• Physical simulations, deep learning, optimizations,
eigenproblems, all use matrix multiplications

• Without any shared memory, we will have sub-optimal
speedups as we’ve seen with simple vectors

• Then, let’s use a shared memory approach (you can find
the code on NVidia’s site)

Without Shared Memory

With Shared Memory

Matrix Multiplication

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct
{
 int width, height, stride;
 float* elements;
} Matrix;

__device__ float GetElement(const Matrix A, int row, int col)
{
 return A.elements[row * A.stride + col];
}

__device__ void SetElement(Matrix A, int row, int col, float value)
{
 A.elements[row * A.stride + col] = value;
}

Matrix Multiplication

// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub,
// located col sub-matrices to the right and row
// sub-matrices down from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A,
 int row, int col)
{
 Matrix Asub;
 Asub.width = BLOCK_SIZE;
 Asub.height = BLOCK_SIZE;
 Asub.stride = A.stride;

 Asub.elements =
 &A.elements[A.stride * BLOCK_SIZE * row +
 BLOCK_SIZE * col];
 return Asub;
}

Matrix Multiplication

// Thread block size
#define BLOCK_SIZE 16

// Forward declaration of matrix multiplication kernel
__global__ void MatMulKernel(const Matrix,
 const Matrix, Matrix);

Matrix Multiplication
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
 // Load A and B to device memory
 Matrix d_A;
 d_A.width = d_A.stride = A.width;
 d_A.height = A.height;
 size_t size = A.width * A.height * sizeof(float);

 cudaMalloc((void**)&d_A.elements, size);
 cudaMemcpy(d_A.elements, A.elements, size,
 cudaMemcpyHostToDevice);

 Matrix d_B;
 d_B.width = d_B.stride = B.width;
 d_B.height = B.height;
 size = B.width * B.height * sizeof(float);

 cudaMalloc((void**)&d_B.elements, size);
 cudaMemcpy(d_B.elements, B.elements, size,
 cudaMemcpyHostToDevice);

Matrix Multiplication
 // Allocate C in device memory
 Matrix d_C;
 d_C.width = d_C.stride = C.width;
 d_C.height = C.height;

 size = C.width * C.height * sizeof(float);

 cudaMalloc((void**)&d_C.elements, size);

 // Invoke kernel
 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
 dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);

 MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

 // Read C from device memory
 cudaMemcpy(C.elements, d_C.elements, size,
 cudaMemcpyDeviceToHost);

 // Free device memory
 cudaFree(d_A.elements);
 cudaFree(d_B.elements);
 cudaFree(d_C.elements);
}

Matrix Multiplication

// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B,
 Matrix C)
{
 // Block row and column
 int blockRow = blockIdx.y;
 int blockCol = blockIdx.x;

 // Each thread block computes one sub-matrix Csub of C
 Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

 // Each thread computes one element of Csub
 // by accumulating results into Cvalue
 float Cvalue = 0;

 // Thread row and column within Csub
 int row = threadIdx.y;
 int col = threadIdx.x;

Matrix Multiplication

 // Loop over all the sub-matrices of A and B that are
 // required to compute Csub
 // Multiply each pair of sub-matrices together
 // and accumulate the results
 for (int m = 0; m < (A.width / BLOCK_SIZE); ++m)
 {
 // Get sub-matrix Asub of A
 Matrix Asub = GetSubMatrix(A, blockRow, m);

 // Get sub-matrix Bsub of B
 Matrix Bsub = GetSubMatrix(B, m, blockCol);

 // Shared memory used to store Asub and Bsub respectively
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

 // Load Asub and Bsub from device memory to shared memory
 // Each thread loads one element of each sub-matrix
 As[row][col] = GetElement(Asub, row, col);
 Bs[row][col] = GetElement(Bsub, row, col);

Matrix Multiplication

 // Synchronize to make sure the sub-matrices are loaded
 // before starting the computation
 __syncthreads();

 // Multiply Asub and Bsub together
 for (int e = 0; e < BLOCK_SIZE; ++e)
 Cvalue += As[row][e] * Bs[e][col];

 // Synchronize to make sure that the preceding
 // computation is done before loading two new
 // sub-matrices of A and B in the next iteration
 __syncthreads();
 }

 // Write Csub to device memory
 // Each thread writes one element
 SetElement(Csub, row, col, Cvalue);
}

